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PREFACE

Non-Euclidean Geometry is now recognized as an impor-

tant branch of Mathematics. Those who teach Geometry-

should have some knowledge of this subject, and all who

are interested in Mathematics will find much to stimulate

them and much for them to enjoy in the novel results and

views that it presents.

This book is an attempt to give a simple and direct

account of the Non-Euclidean Geometry, and one which

presupposes but little knowledge of Mathematics. The first

three chapters assume a knowledge of only Plane and Solid

Geometry and Trigonometry, and the entire book can be read

by one who has taken the mathematical courses commonly given

in our colleges.

No special claim to originality can be made for what is

published here. The propositions have long been estab-

lished, and in various ways. Some of the proofs may be

new, but others, as already given by writers on this subject,

could not be improved. These have come to me chiefly

through the translations of Professor George Bruce Halsted

of the University of Texas.

I am particularly indebted to my friend, Arnold B. Chace,

Sc.D., of Valley Falls, R. I., with whom I have studied and

discussed the subject.

HENRY P. MANNING.
Providence, January, 1901.
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NON-EUCLIDEAN GEOMETRY

INTRODUCTION

The axioms of Geometry were formerly regarded as laws

of thought which an intelligent mind could neither deny nor

investigate. Not only were the axioms to which we have

been accustomed found to agree with our experience, but

it was believed that we could not reason on the supposition

that any of them are not true. It has been shown, however,

that it is possible to take a set of axioms, wholly or in part

contradicting those of Euclid, and build up a Geometry as

consistent as his.

We shall give the two most important Non-Euclidean

Geometries.* In these the axioms and definitions are taken

as in Euclid, with the exception of those relating to parallel

lines. Omitting the axiom on parallels,! we are led to three

hypotheses ; one of these establishes the Geometry of Euclid,

while each of the other two gives us a series of propositions

both interesting and useful. Indeed,, as .long as we can exam-

ine but a limited portion of the universe, it is not possible to

prove that the system of Euclid is true, rather than one of

the two Non-Euclidean Geometries which we are about to

describe.

We shall adopt an arrangement which enables us to prove

first the propositions common to the three Geometries, then

to produce a series of propositions and the trigonometrical

formulae for each of the two Geometries which differ from

* See Historical Note, p. 93. t See p. 91.
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2 NON-EUCLIDEAN GEOMETRY

that of Euclid, and by analytical methods to derive some of

their most striking properties.

We do not propose to investigate directly the foundations

of Geometry, nor even to point out all of the assumptions

which have been made, consciously or unconsciously, in this

study. Leaving undisturbed that which these Geometries

have in common, we are free to fix our attention upon their

differences. By a concrete exposition it may be possible to

learn more of the nature of Geometry than from abstract

theory alone.

Thus we shall employ most of the terms of Geometry with-

out repeating the definitions given in our text-books, and

assume that the figures defined by these terms exist. In

particular we assume :

I. The existence of straight lines determined by any two

points, and that the shortest path between two points is a

straight line.

II. The existence ofplanes determined by any three points

not in a straight line, and that a straight line joining any two

points of a plane lies wholly in the plane.

III. That geometrical figures can be moved about without

changing their shape or sise.

IV. That a point moving along a line from one position to

another passes through every point of the line between, and

that a geometrical magnitude, for example, an angle, or the

length of a portion of a line, varying from one value to another,

passes through all intermediate values.

In some of the propositions the proof will be omitted or

only the method of proof suggested, where the details can be

supplied from our common text-books.



CHAPTER I

PANGEOMETRY

I. PROPOSITIONS DEPENDING ONLY ON THE PRINCIPLE

OE SUPERPOSITION

1. Theorem. If one straight line meets another, the sum of

the adjacent angles formed is equal to two right angles.

2. Theorem. If two straight lines intersect, the vertical

angles are equal.

3. Theorem. Two triangles are equal if they have a side

and two adjacent angles, or two sides and the included angle,

of one equal, respectively, to the corresponding parts of the

other.

4. Theorem. In an isosceles triangle the angles opposite the

equal sides are equal.

Bisect the angle at the vertex and use (3).

5. Theorem. The perpendiculars erected at the middle

points of the sides of a triangle meet in a point if two of

them meet, and this point is the centre of a circle that can

be drawn through the three vertices of the triangle.

G

Proof. Suppose EO and FO meet at 0. The triangles AFO
and BFO are equal by (3). Also, AEO and CEO are equal.
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Hence, CO and BO are equal, being each equal to AO. The

triangle BCO is, therefore, isosceles, and OD if drawn bisect-

ing the angle BOC •will be perpendicular to BC at its middle

point.

6. Theorem. In a circle the radius bisecting an angle at

the centre is perpendicular to the chord which subtends the

angle and bisects this chord.

7. Theorem. Angles at the centre of a circle are propor-

tional to the intercepted arcs and may be measured by them.

8. Theorem. From any point ivithout a line a perpendicu-

lar to the line can be drawn. P

Proof. Let P' be the position which P would

take if the plane were revolved about AB into a
coincidence with itself. The straight line PP'

is then perpendicular to AB. p,

9. Theorem. If oblique lines drawn from a point in a per-

pendicular to a line cut off equal distances from the foot of

the perpendicular, they are equal and make equal angles

with the line and with the perpendicular.

10. Theorem. If two lines cut a third at the same angle,

A



PROPOSITIONS PROVED BY SUPERPOSITION 5

Proof. Let the angles FMB and MND be equal, and through

H, the middle point of MN, draw LK perpendicular to CD
;

then LK will also be perpendicular to AB. For the two

triangles LMH and KNH are equal by (3).

11. Theorem. If two equal lines in a plane are erected per-

pendicular to a given line, the line joining their extremities

makes equal angles with them and is bisected at right angles

by a third perpendicular erected midway between them.

C K D

H

Let AC and BD be perpendicular to AB, and suppose AC
and BD equal. The angles at C and D made with a line join-

ing these two points are equal, and the perpendicular HK
erected at the middle point of AB is perpendicular to CD at

its middle point.

Proved by superposition.

12. Theorem. Given as in the last proposition two perpen-

diculars and a third perpendicular erected midway between

them; any line cutting this third perpendicular at right

angles, if it cuts the first two at all, will cut off equal

lengths on them and make equal angles with them.

Proved by superposition.

Corollary. The last two propositions hold true if the angles

at A and B are equal acute or equal obtuse angles, HK being
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perpendicular to AB at its middle point. If AC = BD, the

angles at C and D are equal, and UK is perpendicular to

CD at its -middle point ; or, if CD is perpendicular to UK
C K D

A H B

at any point, K, and intersects A C and BD, it will cut off equal

distances on these two lines and maize equal angles with them.

II. PROPOSITIONS WHICH ARE TRUE FOR RESTRICTED

FIGURES

The following propositions are true at least for figures

whose lines do not exceed a certain length. That is, if there

is any exception, it is in a case where we cannot apply the

theorem or some step of the proof on account of the length of

some of the lines. For convenience we shall use the word

restricted in this sense and say that a theorem is true for

restricted figures or in any restricted portion of the plane.

1. Theorem. The exterior angle of a triangle is greater

than either opposite interior angle (Euclid, I, 16).
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Proof. Draw AD from A to the middle point of the oppo-

site side and produce it to E, making DE = AD. The two

triangles ADC and EBD are equal, and the angle FBD, being

greater than the angle EBD, is greater than C.

Corollary. At least two angles of a triangle are acute.

2. Theorem. If two angles of a triangle are equal, the oppo-

site sides are equal and the triangle is isosceles.

C

Proof. The perpendicular erected at the middle point of the

base divides the triangle into two figures which may be made

to coincide and are equal. This perpendicular, therefore,

passes through the vertex, and the two sides opposite the

equal angles of the triangle are equal.

3. Theorem. In a triangle with unequal angles the side

opposite the greater of two angles is greater than the side

opposite the smaller; and conversely, if the sides of a triangle

are unequal the opposite angles are unequal, and the greater

angle lies opposite the greater side.

4. Theorem. If two triangles have two sides of one equal,

respectively, to two sides of the other, but the included angle

of the first greater than the included angle of the second, the

third side of the first is greater than the third side of the

second; and conversely, if two triangles have two sides of
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one equal, respectively, to two sides of the other, but the third

side of the first greater than the third side of the second, the

angle opposite the third side of the first is. greater than the

angle opposite the third side of the second.

5. Theorem. The sum of two lines drawn from any point

to the extremities of a straight line is greater than the sum of

two lines similarly drawn but included by them.

6. Theorem. Through any point one perpendicular only

can be drawn to a straight line.

Proof. Let P' be the position -which P would take if the

plane were revolved about AE into coincidence with itself.

If we could have two perpendiculars, PC and PD, from P to

AB, then CP' and DP' would be continuations of these lines

and we should have two different straight lines joining P and

P', which is impossible.

Corollary. Two right triangles are equal when the hypothe-

nuse and an acute angle of one are equal, respectively, to the

hypothenuse and an acute angle of the other.

7. Theorem. The perpendicular is the shortest line that can

be drawn from a point to a straight line.

Corollary. In a right triangle the hypothenuse is greater

than either of the two sides about the right angle.
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8. Theorem. If oblique lines drawn from a point in a per-

pendicular to a line cut off unequal distances from thefoot of

the perpendicular, they are unequal, and the more remote

is the greater ; and conversely, if two oblique lines drawn

from a point in a perpendicular are unequal, the greater

cuts off a greater distance from the foot of the perpendicular.

9. Theorem. If a perpendicular is erected at the middle

point of a straight line, any point not in the perpendicular is

nearer that extremity of the line which is on the same side of

the perpendicular.

Corollary. Two points equidistant from the extremities of a

straight line determine a perpendicular to the line at its middle

point.

10. Theorem. Two triangles are equal when they have three

sides of one equal, respectively, to three sides of the other.

11. Theorem. If two lines in a plane erected perpendicular

to a third are unequal, the line joining their extremities

makes unequal angles with them, the greater angle with the

shorter perpendicular.

A B

Proof. Suppose AC> BD. Produce BD, making BE = AC.

Then BBC = ACE. But BBC > BEC, by (1), and A CD is a

part of A CE. Therefore, all the more BDC > A CD.
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12. Theorem. If the two angles at C and D are equal, the

perpendiculars are equal, and if the angles are unequal, the

perpendiculars are unequal, and the longer perpendicular

makes the smaller angle.

13. Theorem. If two lines are perpendicular to a third,

points on either equidistant, from the third are equidistant

from the other.

C K D

A H B

Proof. Let AB and CD be perpendicular to HK, and on CD
take any two points, C and D, equidistant from K; then C

and D will be equidistant from AB. For by superposition we
can make D fall on C, and then DB will coincide with CA
by (6).

The following propositions of Solid Geometry depend di-

rectly on the preceding and hold true at least for any

restricted portion of space.

14. Theorem. If a line is perpendicular to two intersecting

lines at their intersection, it is perpendicular to all lines of

their plane passing through this point.

15. Theorem. If two planes are perpendicular, a line drawn

in one perpendicular to their intersection is perpendicular to

the other, and a line drawn through any point of one perpen-

dicular to the other lies entirely in the first.
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16. Theorem. If a line is perpendicular to a plane, Any

plane through that line is perpendicular to the plane.

17. Theorem. If a plane is perpendicular to each of two

intersecting planes, it is perpendicular to their intersection.

III. THE THREE HYPOTHESES

The angles at the extremities of two equal perpendiculars

are either right angles, acute angles, or obtuse angles, at least

for restricted figures. We shall distinguish the three cases

by speaking of them as the hypothesis of the right angle, the

hypothesis of the acute angle, and the hypothesis of the obtuse

angle, respectively.

1. Theorem. The line joining the extremities of two equal

perpendiculars is, at least for any restricted portion of the

plane, equal to, greater than, or less than the line joining

their feet in the three hypotheses, respectively.

Proof. Let A C and BD be the two equal perpendiculars and

HK a third perpendicular erected at the middle point of AB.

Then HA and KC are perpendicular to HK, and KC is equal

to, greater than, or less than HA, according as the angle at C

is equal to, less than, or greater than the angle at A (II, 12).

Hence, CD, the double of KC, is equal to, greater than, or less

than AB in the three hypotheses, respectively.
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Conversely, if CD is given equal to, greater than, or less

than AB, there is established for this figure the first, second,

or third hypothesis, respectively.

Corollary. If a quadrilateral has three right angles, the sides

adjacent to the fourth angle are equal to, greater than, or less

than the sides opposite them, according as the fourth artgle is

right, acute, or obtuse.

2. Theorem. If the hypothesis of a right angle is true in a

single case in any restricted portion of the plane, it holds

true in every case and throughout the entire plane.

C' D'

Proof. We have now a rectangle ; that is, a quadrilateral

with four right angles. By the corollary to the last propo-

sition, its opposite sides are equal. Equal rectangles can be'

placed together so as to form a rectangle whose sides shall be

any given multiples of the corresponding sides of the given

rectangle.

Now let A'B' be any given line and A'C' and B'JO' two equal

lines perpendicular to A'B' at its extremities. Divide A'C, if

necessary, into a number of equal parts so that one of these

parts shall be less than AC, and on AC and BD lay off AM
and BN equal to one of these parts, and draw MN. ABNM
is a rectangle ; for otherwise MN would be greater than or
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less than AB and CD, and the angles at M and N would all be

acute angles or all obtuse angles, which is impossible, since

their sum is exactly four right angles. Again, divide A'B'

into a sufficient number of equal parts, lay off one of these parts

on AB and on MN, and form the rectangle APQM. Eectangles

equal to this can be placed together so as exactly to cover the

figure A'B'D'C, which must therefore itself be a rectangle.

3. Theorem. If the hypothesis of the acute angle or the

hypothesis of the obtuse angle holds true in a single case

within a restricted portion of the plane, the same hypothesis

holds true for every case within any such portion of the plane.

Proof. Let CD move along A C and BD, always cutting off

equal distances on these two lines ; or, again, let A C and BD
move along on the line AB towards HK or away from HK,

always remaining perpendicular to AB and their feet always

at equal distances from H. The angles at C and D vary

continuously and must therefore remain acute or obtuse, as

the case may be, or at some point become right angles. There

would then be established the hypothesis of the right angle,

and the hypothesis of the acute angle or of the obtuse angle

could not exist even in the single case supposed.

The angles at C and D could not become zero nor 180° in a

restricted portion of the plane ; for then the three lines A C,

CD, and BD would be one and the same straight line.
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4. Theorem. The sum of the angles of a triangle, at least

in any restricted portion of the plane, is equal to, less than,

or greater than two right angles, in the three hypotheses,

respectively.

C, *D

Fig. 1. Fig. 2.

Proof. Given any right triangle, ABD (Fig. 1), with right

angle at B, draw AC perpendicular to AB and equal to BD.

In the triangles ADC and DAB, AC = BD and AD is common,

but DC is equal to, greater than, or less than AB in the three

hypotheses, respectively. Therefore, DA C is equal to, greater

than, or less' than ADB in the three hypotheses, respectively

(II, 4). Adding BAD to both of these angles, we have ADB
+ BAD equal to, less than, or greater than the right angle

BAC.
Now at least two angles of any restricted triangle are acute.

The perpendicular, therefore, from the vertex of the third

angle upon its opposite side will meet this side within the

triangle and divide the triangle into two right triangles.

Therefore, in any restricted triangle the sum of the angles

is equal to, less than, or greater than two right angles in the

three hypotheses, respectively.

We will call the amount by which the angle-sum of a tri-

angle exceeds two right angles its- excess. The excess' of a

polygon of n sides is the amount by which the sum of its

angles exceeds n — 2 times two right angles.

It will not change the excess if we count as additional

vertices any number of points on the sides, adding to the sum
of the angles two right angles for each of these points.
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5. Theorem. The excess of a polygon is equal to the sum of

the excesses of any system of triangles into which it may be

divided.

Proof. If we divide a polygon into two polygons by a straight

or broken line, we may .assume that the two points where it

meets the boundary are vertices. If the dividing line is a

broken line, broken at p points, the total sum of the angles of

the two polygons so formed will be equal to the sum of the

angles of the original polygon plus four right angles for each

of these p points, and the sides of the two polygons will be

the sides of the original polygon, together -with the p + 1

parts into which the dividing line is separated by the p points,

each part counted twice.

Let S be the sum of the angles of the original polygon, and

n the number of its sides. Let S' and n', S" and n" have the

same meanings for the two polygons into which it is divided.

Then we have, writing R for right angle,

S 1 + S" = S + ipR,

and ri + n" = n + 2 (p + 1).

Therefore, S'-2(n'-2)B + S" - 2 (n" -2)R
= S + 4pR-2(n Jr2p-2)R
= S-2(n-Z)R.

Any system of triangles into which a polygon may be divided

is produced by a sufficient number of repetitions of the above

process. Always the excess of the polygon is equal to the

sum of the excesses of the parts into which it is divided.
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We may extend the notion of excess and apply it to any

combination of different portions of the plane bounded com-

pletely by straight lines.

Instead of considering the sum of the angles of a polygon,

we may take the sum of the exterior angles. The amount by

which this sum falls short of four right angles equals the

excess of the polygon. We may speak of it as the deficiency

of the exterior angles.

The sum of the exterior angles is the amount by which we

turn in going completely around the figure, turning at each

vertex from one side to the next. If we are considering a

combination of two or more polygons, we must traverse the

entire boundary and so as always to have the area considered

on one side, say on the left.

6. Theorem. The excess ofpolygons is always zero, always

negative, or always positive.

Proof. We know that this theorem is true of restricted tri-

angles, but any finite polygon may be divided into a finite

number of such triangles, and by the last theorem the excess

of the polygon is equal to the sum of the excesses of the

triangles.

When the excess is negative, we may call it deficiency, or

speak of the excess of the exterior angles.

Corollary. The excess of a polygon is numerically greater

than the excess of any part which may be cut off from it by

straight lines, except in the first hypothesis, when it is zero.
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The following theorems apply to the second and third

hypotheses.

7. Theorem. By diminishing the sides of a triangle, or even

one side while the other two remain less than some fixed

length, we can diminish its area indefinitely, and the sum

of its angles will approach two right angles as limit.

G d

Proof. Let ABDC be a quadrilateral with three right angles,

A, B, and C. A perpendicular moving along AB will con-

stantly increase or decrease ; for if it could increase a part

of the way and decrease a part of the way there would be

different positions where the perpendiculars have the same

length ; a perpendicular midway between them would be per-

pendicular to CD also, and we should have a rectangle.

Divide AB into n equal parts, and draw perpendiculars

through the points of division. The quadrilateral is divided

into n smaller quadrilaterals, which can be applied one to

another, having a side and two adjacent right angles the same

in all. Beginning at the end where the perpendicular is the

shortest, each quadrilateral can be placed entirely within the

next. Therefore, the first has its area less than -th of
n

the area of the original quadrilateral, and its deficiency or

excess less than -th of the deficiency or excess of the whole.
n

Now any triangle whose sides are all less than A C or BD, and

one of whose sides is less than one of the subdivisions of AB,
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can be placed entirely within this smallest quadrilateral. Such

a triangle has its area and its deficiency or excess less than

- th of the area and of the deficiency or excess of the original

quadrilateral.

Thus, a triangle has its area and deficiency or excess less

than any assigned area and deficiency or excess, however

small, if at least one side is taken sufliciently small, the

other two sides not being indefinitely large.

8. Theorem. Two triangles having the same deficiency or

excess have the same area.

Proof. Let A OB and A' OB' have the same deficiency or excess

and an angle of one equal to an angle of the other. If we place

them together so that the equal angles coincide, the triangles

will coincide and be entirely equal, or there will be a quad-

rilateral common to the two, and, besides this, two smaller

triangles having an angle the same in both and the same

deficiency or excess. Putting these together, we find again

a quadrilateral common to both and a third pair of triangles

having an angle the same in both and the same deficiency or

excess. We may continue this process indefinitely, unless we
come to a pair of triangles which coincide ; for at no time can

one triangle of a pair be contained entirely within the other,

since they have the same deficiency or excess.
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Let so "denote the sum of the sides opposite the equal angles

of the first two triangles, sa the sum of the adjacent sides, and

s'a that portion of the adjacent sides counted twice, which is

common to the two triangles when they are placed together.

Writing o' and a' for the second pair of triangles, o" and a"

for the third pair, etc., we have

sa = s'a + so', so = sa',

sa' = s'a
1 + so", so' = sa",

sa" = s'a" + so'", etc. so" = sa'", etc.

.'. sa — s'a + s'a" + s'a" + ,

sa 1 = s'a' + s'a"' + s'aY -\ .

Therefore, the expressions s'a, s'a
1

, s'a", diminish indefi-

nitely. Each of these is made up of a side counted twice

from one and a side counted twice from the other of a pair of

triangles. Thus, if we carry the process sufficiently far, the

remaining triangles can be made to have at least one side as

small as we please, while all the sides diminish and are less,

for example, than the longest of the sides of the original

triangles. Therefore, the areas of the remaining triangles

diminish indefinitely, and as the difference of the areas

remains the same for each pair of triangles, this difference

must be zero. The triangles of each pair and, in particular,

the first two triangles have the same area.

Let ABC and DEF have the same deficiency or excess, and

suppose AC<DF. Produce AC to C", making AC = DF.
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Then there is some point, B', on AB between A and B such

that AB'C has the same deficiency or excess and the same

area as ABC. Place AB'C upon DEF so that A C- will coin-

cide with DF, and let DE'F be the position which it takes.

If the triangles do not coincide, the vertex of each opposite

the common side DF lies outside of the other. The two tri-

angles have in common a triangle, say DOF, and besides this

there remain of the two triangles two smaller triangles which

have one angle the same in both and the same deficiency

or excess. These two triangles, and therefore the original

triangles, have the same area.

9. Theorem. The areas of any two triangles are propor-

tional to their deficiencies or excesses.

Proof. A triangle may be divided into u smaller triangles

having equal deficiencies or excesses and equal areas by lines

drawn from one vertex to points of the opposite side. Each of

these triangles has for its deficiency or excess - th of the defi-

ciency or excess of the original triangle, and for its area -th

of the area of the original triangle.

When the deficiencies or excesses of two triangles are com-

mensurable, say in the ratio m : n, we can divide them into

m and n smaller triangles, respectively, all having the same

deficiency or excess and the same area. The areas of the

given triangles will therefore be in the same ratio, m : n.
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When the deficiencies or excesses of two triangles, A and B,

are not commensurable, we may divide one triangle, A, as

above, into any number of equivalent parts, and take parts

equivalent to one of these as many times as possible from the

other, leaving a remainder which has a deficiency or excess

less than the deficiency or excess of one of these parts. The

portion taken from the second triangle forms a triangle, B'.

A and B' have their areas proportional to their deficiencies or

excesses, these being commensurable. Now increase indefi-

nitely the number of parts into which A is divided. These

parts will diminish indefinitely, and the remainder when we
take B' from B will diminish indefinitely. The deficiency or

excess and the area of B' will approach those of B, and the

triangles A and B have their areas and their deficiencies or

excesses proportional.

Corollary. The areas of two polygons are to each other as

their deficiencies or excesses.

10. Theorem. Given a right triangle with a fixed angle

;

if the sides of the triangle diminish indefinitely, the ratio of

the opposite side to the hypothenuse and the ratio of the

adjacent side to the hypothenuse approach as limits the sine

and cosine of this angle.

Proof. Lay off on the hypothenuse any number of equal

lengths. Through the points of division A lt Aw draw per-

pendiculars AiCi, AtCj, • • to the base, and to these lines
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produced draw perpendiculars A 3Dlf A aD2, each from, the

next point of division of the hypothemise.

The triangles OA xCx and A 2A XDX are equal (II, 6, Cor.).

CtA i ^C 1D 1 and C XC 2 ^DXA 2 ;

therefore, ^£^OA 2
< 0.4!

the upper sign being for the second hypothesis and the lower

sign for the third hypothesis.

and
oc1< qc1
OA^ 0A X

l>.
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Add 1 to both members,

C^D^^ 0A r

Cr^A,.^ OA

or ><

r— \

But CrA r ^C,._,Dr^.

CrA r > Cr_ l
Ar_ 1

0A r
< 0A r_,

Again, Cr_ xCr
< Dr_ x

A r .

Hence, from trie second inequality above, we have

A r_,A>OA r_l

0Cr_ x
> 0A,._

X

Add 1 to both members,

or

_qc£_ < _OAJ
.

0Cr_^> 0A r_

ocz< qcI _

OA,. > 0A,._

CA OC
The ratios —— and —— being less than 1, and always increas-

C/^L \JJx

ing or always decreasing when the hypothenuse decreasesy

approach definite limits. These limits are continuous func-

tions of A ; if we vary the angle of any right triangle contin-

uously, keeping the hypothenuse some fixed length, the other

two sides will vary continuously, and the limits of their ratios

to the hypothenuse must, therefore, vary continuously.

Calling the limits for the moment sA and cA, we may extend

their definition, as in Trigonometry, to any angles, and prove

that all the formulae of the sine and cosine hold for these

functions. Then for certain angles, 30°, 45°, 60°, we can prove
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that they have the same values as the sine and cosine, and

their values for all other angles as determined from their

values for these angles -will be the same as the corresponding

values of the sine and cosine.

C

Draw a perpendicular, CF, from the right angle C to the

hypothenuse AB. The angle FCB is not equal to A, but the

difference, being proportional to the difference of areas of

the two triangles ABC and FBC, diminishes indefinitely when

the sides of the triangles diminish. From the relation

AF AC FB BC
AC AB BC AB

we have, by passjng to the limit,

(cA) 1 + (sA)" = 1.

Let x and y be any two acute angles, and draw the figures

used to prove the formulae for the sine and cosine of the sum

of two angles.

The angles x and y remaining fixed, we can imagine all of

the lines to decrease indefinitely, and the functions sx, ex, sy,

etc., are the limits of certain ratios of these lines.

CA _

OA
'
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The angles at M are equal in the two triangles EMB and

CMO, and we may write

CM _ ME + S _ ME ±CM+S
OM MB

where 8 has the limit zero.

MB± OM

,. CE
n

. CM
lim —— = lim —— = sx.

OB OM

The angle EAB, or x\ is not the same as x, but differs from

x only by an amount which is proportional to the difference of

the areas of the triangles OMC and MAB, and which, there-

fore, diminishes indefinitely. Thus, the limits of sx' and ex'

are sx and ex.

Finally, as the two triangles A CN and BDN have the angle

N in common, we may write

DN__CN+ h' CN-DN+8'
B~N~ AN

where the limit of 8' is zero.

CD

AN — BN

. . .. CN
lim —— = lim ——- = sx.

AB AN
Now at the limits our identities become

s (x + y) = sx • cy + ex sy,

c(x + y) = ex cy — sx sy.
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By induction, these formulae are proved true for any angles.

Other formulas sufficient for calculating the values of these

functions from their values for 30°, 45°, and 60° are obtained

from these two by algebraic processes.

If the sides of an isosceles right triangle diminish indefi-

nitely, the angle does not remain fixed but approaches 45°,

and the ratios of the two sides to the hypothenuse approach

as limits s 45° and c 45°. Therefore, these latter are equal,

and since the sum of their squares is 1, the value of each is

—=j the same as the value of the sine and cosine of 45°.

V2
Again, bisect an equilateral triangle and form a triangle in

which the hypothenuse is twice one of the sides. When the

sides diminish, preserving this relation, the angles approach

30° and 60°. Therefore, the functions, s and c, of these angles

have values which are the same as the corresponding values of

the sine and cosine of the same angles.

Corollary. When any plane triangle diminishes indefinitely,

the relations of the sides and angles approach those of the sides

and angles of plane triangles in the ordinary geometry and

trigonometry with which we are familiar.

11. Theorem. Spherical geometry is the same in the three

hypotheses, and the formulae of spherical trigonometry are

exactly those of the ordinary spherical trigonometry.

Proof. On a sphere, arcs of great circles are proportional to

the angles which they subtend at the centre, and angles on a

sphere are the same as the diedral angles formed by the planes

of the great circles which are the sides of the angles. Their

relations are established by drawing certain plane triangles

which may be made as small as we please, and therefore may
be assumed to be like the plane triangles in the hypothesis

of a right angle. These relations are, therefore, those of the

ordinary Spherical Trigonometry.
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The three hypotheses give rise to three systems of Geometry,

which are called the Parabolic, the Hyperbolic, and the Elliptic

Geometries. They are also called the Geometries of Euclid, of

Lobachevsky, and of Eiemann. The following considerations

exhibit some of their chief characteristics.

C D D' D"

Given PC perpendicular to a line, CF; on the latter we take

CD = PC,

DD' = PD,

D'D" = PD', etc.

Now if PC is sufficiently short (restricted), it is shorter

than any other line from P to the line CF ; for any line as

short as PC or shorter would be included in a restricted por-

tion of the plane about the point P, for which the perpendicu-

lar is the shortest distance from the point to the line.

Therefore, PD>PC, --.CD'>2CD,

PD' > PC, etc. ; CD" > 3 CD, etc.

Again, in the three hypotheses, respectively,

CPdIt' and CDP%-
A

,> 4 > 4

DPD'%\CPD, CD'P^iCDP,

D'PD" <iDPD', etc., CD"P | i CD'P, etc.

At P we have a series of angles. In the first hypothesis

there is an infinite number of these angles, and the series

forms a geometrical progression of ratio £, whose value is
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exactly -=• In the second hypothesis there is also an infinite

number of these angles, and the terms of the series are less

than the terms of the geometrical progression. The value of

IT
the series is, therefore, less than -x • In the third hypothesis

we have a series whose terms are greater than those of the

geometrical progression, and, therefore, whether the series is

7T
convergent or divergent, we can get more than — by taking 'a

sufficient number of terms. In other words, we can get a right

angle or more than a right angle at P by repeating this process

a certain finite number of times.

The angles at D, D', D", are exactly equal to the terms

of the series of angles at P. In the first two hypotheses they

approach zero as a limit.

The distances CD, CD', CD", increase each time by more

than a definite quantity, CD; therefore, if we repeat the

process an unlimited number of times, these distances will

increase beyond all limit. Thus, in the first and second

hypotheses we prove that a straight line must be of infinite

length.

In the hypothesis of the obtuse angle the line perpendicular

to PC at the point P will intersect CF in a point at a certain

finite distance from C, one of the D's, or some point between.

On the other side of PC this same perpendicular will intersect

FC produced at the same distance. But we have assumed that

two different straight lines cannot intersect in two points

;

therefore, for us the third hypothesis cannot be true unless

the straight line is of finite length returning into itself, and

these two points are one and the same point, its distance from

C in either direction being one-half the entire length of the

line. In this way, however, we can build up a consistent

Geometry on the third hypothesis, and this Geometry it is

which is called the Elliptic Geometry.
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The constructions would have been the same, and very

nearly all the statements -would have been the same, if we had

taken CD any arbitrary length on CF.

The restriction which we have placed upon some of

the propositions of this chapter is necessary in the third

hypothesis.

Thus, in the proof that the exterior angle of a triangle is

greater than the opposite interior angle, the line AD drawn

through the vertex A to the middle point D of the opposite

side was produced so as to make AE = 2 AD. If AD were

greater than half the entire length of the straight line deter-

mined by A and D, this would bring the point E past the point

A, and the angle CBE, which is equal to the angle C, instead

of being a part of the exterior angle CBF, becomes greater

than this exterior angle.

Again, if two angles of a triangle are equal and the side

between them is just an entire straight line, it does not follow

necessarily that the opposite sides are equal. It may be said,
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however, -that the opposite sides form one continuous line, and,

therefore, this figure is not strictly a triangle, but a figure

somewhat like a lune. The points A and B are the same

point, and the angles A and B are vertical angles.

Finally, though we assume that the shortest path between

two points is a straight line, it is not always true that a

straight line drawn between two points is the shortest path

between them. We can pass from one point to another in

two ways on a straight line ; namely, over • each of the two

parts into which the two points divide the line determined by

them. One of these parts will usually be shorter than the

other, and the longer part will be longer than some paths

along broken lines or curved lines.

When, however, the straight line is of infinite length, that

is, in the hypothesis of the right angle and in the hypothesis

of the acute angle, all the propositions of this chapter hold

without restriction.

The Euclidean Geometry is familiar to all. We will now
make a detailed study of the Geometry of Lobachevsky, and

then take up in the same way the Elliptic Geometry.



CHAPTER II

THE HYPERBOLIC GEOMETRY

We have now the hypothesis of the acute angle. Two lines

in a plane perpendicular to a third diverge on either side of

their common perpendicular. The sum of the angles of a

triangle is less than two right angles, and the propositions

of the last chapter hold without restriction.

I. PARALLEL LINES

From any point, P, draw a perpendicular, PC, to a given

line, AB, and let PD be any other line from P meeting CB
in D. If D move off indefinitely on CB, the line PD will

approach a limiting position PE.

PE is said to be parallel to CB at P. PE makes with PC
an angle, CPE, which is called the angle of parallelism for

the perpendicular distance PC. It is less than a right angle

by an amount which is the limit of the deficiency of the tri-

angle PCD. On the other side of PC we can find another

line parallel to CA and making with PC the same angle of

parallelism. We say that PE is parallel to AB towards that

part which is on the same side of PC with PE. Thus, at any

31
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point there are two parallels to a line, but only one towards

one part of the line. Lines through P which make with PC
an angle greater than the angle of parallelism and less than

its supplement do not meet AB at all. We write n (p) to

denote the angle of parallelism for a perpendicular distance, p.

1. Theorem. A straight line maintains its parallelism at

all points.

Let AB be parallel to CD at E and let F be any other point

of AB on either side of E, to prove that AB is parallel to CD
atF.

Proof. To H, on CD, draw EH and FH. If H move off

indefinitely on CD, these two lines will approach positions of

parallelism with CD. But the limiting position of EH is the

line AB passing through F, and if the limiting position of FH
were some other line, FK, F would be the limiting position of

H, the intersection of EH and FH.

2. Theorem. If one line is parallel to another, the second

is parallel to the first.

Given AB parallel to CD, to prove that CD is parallel to AB.
Proof. Draw A C perpendicular to CD. The angle CAB

will be acute ; therefore, the perpendicular CE from C to AB
must fall on that side of A towards which the line AB is

parallel to CD (Chap. I, II, 1). The angle ECD is then acute

and less than CEB, which is a right angle. That is, we have

CAB < A CD, and CEB > ECD.
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If the line CE revolve about the point C to the position of

CA, the angle at E will decrease to the angle A, and the angle

at C will increase to a right angle. There will be some posi-

tion, say CF, where these two angles become equal ; that is,

CFB = FCD.

aXe

Draw MN perpendicular to CF at its middle point and

revolve the figure about MN as an axis. CD will fall upon

the original position of AB, and AB will fall upon the original

position of CD. Therefore, CD is parallel to AB.

Corollary. FB and CD are both parallel to MN.

F

Proof. FB and CD are symmetrically situated with respect

to MN, and cannot intersect MN since they do not intersect

each other. Draw FH to H, on CD, intersecting MN in K.

If H move off indefinitely on CD, FH will approach the posi-

tion of FB as a limit. Now K cannot move off indefinitely

before H does, for FK< FH. But again, when H moves off

indefinitely, K cannot approach some limiting position at a
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finite distance on MN; for FB, and therefore CD, -would then

intersect MN and each other at this point. Therefore, H and

K must move off together, and the limiting position of FH
must be at the same time parallel to CD and MN.

In the same "way we can prove that any line lying in a

plane between two parallels must intersect one of them or be

parallel to both.

3. Theorem. Two lines parallel to a third towards the same

part of the third are parallel to each other.

E

First, when they are all in the same plane.

Let AB and EF be parallel to CD, to prove that they are

parallel to each other.

Proof. Suppose AB lies between the other two. To H, any

point on CD, draw AH and EH, and let K be the point where

EH intersects AB. As H moves off indefinitely on CD, All

and EH approach as limiting positions AB and EF. Now li

cannot move off indefinitely before H does, for EK < EH.

But again, when H moves off indefinitely, K cannot approach

some limiting position at a finite distance on AB ; for this point

would be the intersection of AB and EF, and the limiting

position of H, whereas H moves off indefinitely on CD. There-

fore, H and K must move off together, and the limiting posi-

tion of EH must be at the same time parallel to CD and AB.
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If AB, lying 'between the other two, is given parallel to CD
and EF, EF must be parallel to CD; for a line through E
parallel to CD would be parallel to AB, and only one line can

be drawn through E parallel to AB towards the same part.

Second, when the lines are not all in the same plane.

Let AB and CD be two parallel lines and let E be any point

not in their plane.

Proof. To H on CD drawAH and EH. As H moves off indefi-

nitely, AH approaches the position of AB, and the plane EAH
the position of the plane EAB. Therefore, the limiting posi-

tion of EH is the intersection of the planes ECD and EAB.

The intersection of these planes is, then, parallel to CD, and

in the same way we prove that it is parallel to AB.

Now, if EF is given as parallel to one of these two lines

towards the part towards which they are parallel, it must be

the intersection of the two planes determined by them and

the point E, and therefore parallel to the other line also.

4. Theorem. Parallel lines continually approach each other.

Let AB and CD be parallel, and from A and B, any points

on AB, drop perpendiculars AC and BD to CD. Supposing

that B lies beyond A in the direction of parallelism, we are

to prove that BD < AC.

Proof. At H, the middle point of CD, erect a perpendicular

meeting AB in K. The angle BKH is an acute angle, and the
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angle AKH is an obtuse angle. Therefore, a perpendicular to

HK at K must meet CA in some point, E, between C and A

and DB produced in some point, F, beyond B. But DF = CE
(Chap. I, I, 12) ; therefore, DB < CA.

Corollary. If AB and CD are parallel and A C makes equal

angles with them (like FC in 2 above), then EF, cutting off

equal distances on these two lines, AE = CF, on the side towards

which they are parallel, will be shorter than A C.

A

M H N

D

Proof. MN, perpendicular to AC at its middle point, is

parallel to AB and bisects EF, the figure being symmetrical

with respect to MN. EH, the half of EF, is less than AM,
and therefore EF is less than A C.

5. Theorem. As the perpendicular distance varies, starting

from zero and increasing indefinitely, the angle ofparallelism

decreases from a right angle to zero.

Proof. In the first place the angle of parallelism, which is

acute as long as the perpendicular distance is positive, will be
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made to differ from a right angle by less than any assigned

value if we take a perpendicular distance sufficiently small.

For, ADE being any given angle as near a right angle as

we please, we can take a point, L, on DE and draw LR perpen-

dicular to DA at R. The angle RDL must increase to become

the angle of parallelism for the perpendicular distance RD.

Now let p be the length of a given perpendicular PM, and

let a be the amount by which its angle of parallelism differs

from —
; that is, say

PM, being perpendicular to MN, and H any point on MN, the

angle MPH approaches as a limit the angle of parallelism,

II (^>), when H moves off indefinitely on MN. The line PH
meets the line MN as long as MPH<Il(p)

>
and by taking

MPH sufficiently near II (p), but less, we can make the angle

MHP as small as we please (see p. 27).

In figure on page 38, let A C be perpendicular to AB, D being

any point on A C and DE parallel to AB. Draw DK beyond DE,

making with DE an angle, EDK = II (p), and make DK = p.

TF, perpendicular to DK at K, will be parallel to DE and AB.
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By placing PMN of the last figure upon DKT, we see that

DC will meet KT in a point, G if

KDC < n (p),

that is, if ADE > 2 a.

Then in the right triangle DKG,

DGK + KDG <~

ADE + KDG = -~ +a;

DGK < A DIC — a.

Starting from the point G, we can repeat this construction,

and each time we subtract from the angle of parallelism an

amount greater than a. We can continue this process until

the angle of parallelism becomes equal to or less than 2 a.

If the point D move along AC, DE remaining constantly

parallel to AB, the angle at D will constantly diminish, and

by letting D move sufficiently far on A C we can reach a point

where this angle becomes equal to or less than 2 a.

Suppose D is at the point where the angle of parallelism is

just 2 a. Then, if we draw DK and TF as before, KT will be
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parallel to DC. All the parallels to AB lying between AB
and this position of TF meet A C, and as the parallel moves
towards this position of TF, the angle of parallelism at D
approaches zero, and the point D moves off indefinitely.

For an obtuse angle we may take p negative, and we have

n(-p)=7r-ii(p),

6. Theorem. The perpendiculars erected at the middle

points of the sides of a triangle are all parallel if two of

them are parallel.

Let A, B, and C be the vertices of the triangle, and D, E,

and F, respectively, the middle points of the opposite sides.

Suppose the perpendiculars at D and E are given parallel, to

prove that the perpendicular at F is parallel to them.



40 NON-EUCLIDEAN GEOMETRY

Proof. Draw CM through C parallel to the two given par-

allel perpendiculars. CM forms with the two sides at C angles

of parallelism n ( ?
J
and n ( ^ J

, of which the angle at C is

the sum or difference according as C lies between the given

perpendiculars or on the same side of both. By properly-

diminishing these angles at C, keeping the lengths of CA
and CB unchanged, we can make the perpendiculars at their

middle points D and E intersect CM, and therefore each other,

at any distance from C greater than - and greater than -•

Let A'B'C be the triangle so formed, the point where the

two given perpendiculars meet, and CM' the line through O.

In the triangle A'B'C", the three perpendiculars meet at the

point (Chap. I, I, 5). Now we can let move off on C'M',

the construction remaining the same. That is, we let the

lines CA' and CB' rotate about C without changing their

lengths, in such a manner that the three perpendiculars D'O,

E'O, and F'O shall always pass through 0. As moves off

indefinitely, the angles at C approach n f -
J
and n ( -

J
as

limits, and the three perpendiculars approach positions of

parallelism with CM 1 and with each other. But the triangle

A'B'C approaches as a limit a triangle which is equal to ABC,

having two sides and the included angle equal, respectively, to

the corresponding parts of the latter. Therefore, in ABC the

three perpendiculars are all parallel.

7. Theorem. Lines which do not intersect and are not

parallel have one and only one common perpendicular.

Proof. Let AB and CD be the two lines, and from A, any

point of AB, drop AC perpendicular to CD. It AC is not

itself the common perpendicular, one of the angles which it

makes with AB will be acute. Let this angle be on the side



PERPENDICULARS IN A TRIANGLE 41

towards AB, so that BAC < — • Draw AE parallel to CD
£l

on this same side of A C. The angle EA C is less than BA C,

since AB is not parallel to CD and does not intersect it. Let

AH be any line drawn in the angle EAC, intersecting CD at

H. If H, starting from the position of C, move off indefinitely

on the line CD, the angle BAH will decrease from the magni-

tude of the angle BAC to the angle BAE. The angle AHC
will decrease indefinitely from the magnitude of the angle at

C, which is a right angle and greater than BA C. There will

be some position for which BAH = AHC. In this position

the line NM through the middle point of AH perpendicular

to one of the two given lines will be perpendicular to the

other, as proved in Chap. I, I, 10.

If there were two common perpendiculars we should have a

rectangle, which is impossible in the Hyperbolic Geometry.

8. Theorem. If the perpendiculars erected at the middle

points of the sides of a triangle do not meet and are not

parallel, they are all perpendicular to a certain line.
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Proof. We can draw a line, AB, that will be perpendicular

to two of these lines, and the perpendiculars from the three

vertices of the triangle upon this line will be equal, by Chap. I,

II, 13. A perpendicular to AB erected midway between any

two of these three is perpendicular to the corresponding side

of the triangle at its middle point (Chap. 1, 1, 11). Thus, all

three of the perpendiculars erected at the middle points of the

sides of the triangle are perpendicular to AB.

A line is parallel to a plane if it is parallel to its projection

on the plane.

9. Theorem. A line may be drawn perpendicular to a plane

and parallel to any line not in the plane.

B

M
ZaL *7

M
N

ZM

,K

N

Proof. Let AB be the given line and MN the plane. If AB
meets the plane MN at a point, A, we take on its projection a

length, AC, such that the angle at A equals II (AC). Then

CD, perpendicular to the plane at C, will be parallel to AB.

In the same way, on the other side of the plane a perpendic-

ular can be drawn parallel to BA produced.

If AB does not meet MN, then at least in one direction it

diverges from MN. Through H, any point of the projection

of AB on the plane, we can draw a line, HK, parallel to AB
towards that part of AB which diverges from MN, and then

draw CD parallel to this line and perpendicular to the plane.

Unless AB is parallel to MN it will meet the plane at some

point, or the plane and line will have a common perpendicular,

and the line will diverge from the plane in both directions.
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In the latter case there are two perpendiculars that are parallel

to the line, one parallel towards each part of the line.

Two perpendiculars cannot be parallel towards the same

part of a line ; for then they would be parallel to each other,

and two lines cannot be perpendicular to a plane and parallel

to each other.

II. BOUNDARY-CURVES AND SURFACES, AND EQUI-

DISTANT-CURVES AND SURFACES

Having given the line AB, at its extremity, A, we take any

arbitrary angle and produce the side iC so that the perpen-

dicular erected at its middle point shall be parallel to AB.

The locus of the point C is a curve which is called oricycle, or

boundary-curve. AB is its axis.

From their definition it follows that all boundary-curves

are equal, and the boundary-curve is symmetrical with respect

to its axis; if revolved through two right angles about its

axis, it will coincide with itself.

1. Theorem. Any line parallel to the .
axis of a boundary-

curve may be taken for axis.

Let AB be the axis and CD any line parallel to AB, to

prove that CD may be taken as axis.
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Proof. Draw A C ; also to E, any other point on the curve,

draw AE and CE. The perpendiculars erected at the middle

points of A C and of AE are parallel to AB and CD and to each

A b

other. Therefore, the perpendicular erected at the middle

point of CE, the third side of the triangle A CE, is parallel to

them and to CD. CD then may be taken as axis.

Corollary. The boundary-curve may be slid along on itself

without altering its shape ; that is, it has a constant curvature.

2. Theorem. Two boundary-curves having a common set of

axes cut off the same distance on each of the axes, and the

ratio of corresponding arcs depends only on this distance.

Proof. Take any two axes and a third axis bisecting the

arc which the first two intercept on one of the. two boundary-
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curves. By revolving the figure about this axis we show that

the curves cut off equal distances on the two axes.

Let AA ', BB', and CC be any three axes of the two boundary-

curves AB and A'B'; let their common length be x and let

them intercept arcs s and t on AB, s' and t' on A'B'.

When s = t, s' = t', and, in general,

t
= 7''

as we prove, first when s and t are commensurable, and then

by the method of limits when they are incommensurable.

The ratio — is, therefore, a constant for the given value of x.

s
Write .;=/(*)•

From three boundary-curves having the same set of axes,

we find
/(* + *)== /(*)/&).

This property is characteristic of the exponential function

g
whose general form is- f(x)= e°*.* Therefore, - = e°

x
, the

value of a depending on the unit of measure (see below p. 76).

* Putting y = z, 2 x, (n — 1) x in succession, we find

for positive integer values of n, x being any positive quantity.

'G'M'®]'-
and this is the rth power of the sth root of the first member of the

equation r

[/(f)]' =/<*); •/(-» = [/(*)]»•
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3. Theorem. The area enclosed by two boundary-curves

having the same axes and by two of their common axes is

proportional to the difference of the intercepted arcs.

Proof. Let s and s
1 be the lengths of the intercepted arcs,

and I the distance measured on an axis between them. Let t,

t\ and k be the corresponding quantities for a second figure

constructed in the same way.

If the corresponding lines in the two figures are all equal,

the areas are equal, for they can be made to coincide. If

only k = I, the areas are to each other as corresponding arcs,

say as s' : t', proved first when the arcs are commensurable, and

then by the method of limits when they are incommensurable.

When I and k are commensurable, suppose

I k

III II

Thus, assuming that f(x) is a, continuous function of x, we have proved

that for all real positive values of x and n

f(ru) = [/(x)]»,

and if we put x for n and 1 for x, we have

/(*) = [/(I)?-

We will write /(l) = e" ; then

f(x) = e*x.
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We can draw a series of boundary-curves at distances equal to

a on the axes and divide the areas into m and n parts, respec-

tively. If r is the ratio of arcs corresponding to the distance

a, these parts "will be proportional to the quantities

s', s'r, s'r2, s'rm~ 1

;

t', t'r, t'r*, t'r"- 1

The two areas are then to each other in the ratio
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It can be proved, exactly as in the case of two boundary-

curves having the same set of axes, that arcs on an equidis-

tant-curve are proportional to the segments cut off by the

axes at their extremities on the base line or on any other

equidistant-curve having the same set of axes.

4. Theorem. The boundary-curve is a limiting curve between

the circle and the equidistant-curve ; it may be regarded as a

circle with infinitely large radius, or as an equidistant-curve

whose base line is infinitely distant.

Proof. Take a line of given . length, AB = 2 a say, making

an angle, A, with a fixed line, A C. Construct another angle at

B equal to the angle A, and draw a perpendicular to AB at its

middle point, D.

If the angle at A is sufficiently small, we have an isosceles

triangle with AB for base, and its vertex at a point, F, on A C.

With F as centre, we can draw a circle through the points A
and B. Now let the angle at A gradually increase, the rest

of the figure varying so as to keep the construction. F will

move off indefinitely, and when A = n (a) the three lines AF,

•BF, and DF will become parallel, and B will become a point

on the boundary-curve A B', which has A C for axis.

On the other hand, if the angle at A were taken acute, but

greater than n(a), we should have three lines, AE, BH, and
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DF, perpendicular to a line, EH, the base line of an equidis-

tant-curve through the points A and B. Now let the angle A
gradually decrease, the rest of the figure varying so as to pre-

serve the construction. The quadrilateral ADFE, having three

right angles and the fourth angle A decreasing, must increase

in area. We get this same movement if we think of AD and

DF remaining fixed in the plane while AE revolves about A,

making the angle A decrease. Thus the only way in which

the area of the quadrilateral can increase is for EH to move
off along on AC and become more and more remote from A.

When A becomes equal to II (a), BH and DF become parallel

to AC, and B falls on the boundary-curve AB'.

Calling the radius of a circle axis, we find that circles,

boundary-curves, and equidistant-curves have many properties

in common

:

The perpendicular erected at the middle point of any chord

is an axis. In particular, a tangent is perpendicular to the axis

drawn from its point of contact. These are curves cutting

at right angles a system of lines through a point, a system

of parallel lines, and the perpendiculars to a given line,

respectively.

Two of these curves having the same set of axes cut off

equal lengths on all these axes, and the ratio of corresponding

arcs on two such curves is a constant depending only on the

way in which they divide the axes.

Three points determine one of these curves ; that is, through

any three points not in a straight line we can draw a curve

which shall be either a circle, a boundary-curve, or an equi-

distant-curve, and through any three points only one such

curve can be drawn. Any triangle may be inscribed in one

and only one of these curves.

Each of these curves can be moved on itself or revolved about

any axis through 180° into coincidence with itself.



50 NON-EUCLIDEAN GEOMETRY

A boundary-surface or orisphere is a surface generated by

the revolution of a boundary-curve about one of its axes.

5. Theorem. Any line parallel to the axis of a boundary-

surface may be regarded as axis.

E
F
K

Let A A' be the axis, meeting the surface at A, and BB' a

line parallel to the axis through any other point, B, of the

surface ; to prove that BB' may be regarded as axis.

Proof. Let C be a third point on the surface. Draw CC"

through C, and through D, E, and F, the middle points of the

sides of the plane triangle ABC, draw DD', EE', and FF' all

parallel to A A'. Finally, let 00' be parallel to these lines and

perpendicular to the plane ABC. The projecting planes of

the other parallels all pass through 00' (see I, 9).

Since A A' is axis to the surface, EE' and FF' are perpen-

dicular to AC and AB, respectively. Draw FK perpendicular

to the plane ABC at F. It will lie in the projecting plane

OFF'. AB, being perpendicular to FF' and to FK, is perpen-
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dicular to this plane, OFF1

, and therefore to OF. In the same

way we prove that AC is perpendicular to OE. Therefore,

BC is perpendicular to OD (Chap. I, I, 5). But OD is the

intersection of the plane ABC with the plane ODD'. Hence,

BC is perpendicular to this plane and to DD' (Chap. I, II, 15).

DD' being parallel to BB' lies in the plane determined by
BB' and BC, and in this plane only one perpendicular can be

drawn to BC at its middle point. Therefore, if we pass any

plane through BB' and from B draw a chord to any other

point, C, of its intersection with the surface, the perpendicular

in this plane to BC, erected at the middle point of BC, will

be parallel to BB'. This proves that the section is a boundary-

curve, having BB' for axis, and that the surface can be gener-

ated by the revolution of such a boundary-curve around BB'.

Therefore, BB' may be regarded as axis of the surface.

A plane passed through an axis of a boundary-surface is

called a principal plane. Every principal plane cuts the sur-

face in a boundary-curve. Any other plane cuts the surface in

a circle ; for the surface may be regarded as a surface of revo-

lution having for axis of revolution that axis which is perpen-

dicular to the plane. This perpendicular may be called the axis

of the circle, and the point where it meets the surface, the pole

of the circle. The pole of a circle on a boundary-surface is

at the same distance from all the points of the circle, distance

being measured along boundarydines on the surface.

Any two boundary-surfaces can be made to coincide, and a

boundary-surface can be moved upon 'itself, any point to the

position of any other point, and any boundary-curve through

the first point to the position of any boundary-curve through

the second point. We may say that a boundary-surface has

a constant curvature, the same for all these surfaces. Figures

on a boundary-surface can be moved about or put upon any

other boundary-surface without altering their shape or size.
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We can develop a Geometry on the boundary-surface. By
line we mean the boundary-curve in which the surface is cut

by a principal plane. The angle between two lines is the

same as the diedral angle between the two principal planes

which cut out the lines on the surface.

6. Theorem. Q-eometry on the boundary-surface is the same

as the ordinary Euclidean Plane Greometry.

Proof. On two boundary-surfaces with the same system of

parallel lines for axes corresponding triangles are similar ; that

is, corresponding angles are equal, having the same measures

as the diedral angles which cut them out, and corresponding

lines are proportional by (2). But we can place these figures

on the same surface ; therefore, on one boundary-surface we

can have similar triangles. Thus, we can diminish the sides

of a triangle without altering their ratios or the angles. We
can do this indefinitely ; for the ratio of corresponding lines

on the two surfaces, being expressed by the function e"
1 of the

distance between them, can be made as large as we please by

taking x sufficiently large. If we assume that figures on the

boundary-surface become more and more like plane figures

when we diminish indefinitely their size, it follows that a

triangle on this surface approaches more and more the form

of an infinitesimal plane triangle, for which the sum of the

angles is two right angles, and the angles and "sides have

the same relations as in the Euclidean Plane Geometry. All

the formulae of Plane Trigonometry with which we are familiar

hold, then, for triangles on the boundary-surface.

On the boundary-surface we have the "hypothesis of the

right angle." Eectangles can be formed, and the area of a

rectangle is proportional to the product of its base and alti-

tude, while the area of a triangle is half of the area of a

rectangle having the same base and altitude.
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An equidistant-surface is a surface generated by the revo-

lution of an equidistant-curve about one of its axes. It is

the locus of points at a given perpendicular distance from a

plane. Any perpendicular to the plane may be regarded as

an axis, and the surface is a surface cutting at right angles a

system of lines perpendicular to the plane. The surface has

a constant curvature, fitting upon itself in any position.

III. TRIGONOMETRICAL FORMULA

1. Let ABC be a plane right triangle. Erect A A' perpen-

dicular to its plane and draw BB' and CC parallel to A A'.

Draw a boundary-surface through A, having these lines for

axes and forming the boundary-surface triangle AB"C". Also

construct the spherical triangle about the point B.

co-n(5m°-A

The angle A is the same in the plane triangle and in the

boundary-surface triangle. The planes through AA' are per-

pendicular to ABC. Hence, the spherical triangle has a right

angle at the vertex which lies on c, and BC being perpendic-

ular to CA is perpendicular to the plane of CC and AA'.

Therefore, the plane BCC is perpendicular to the plane ACC,
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and the diedral whose edge is BC has for plane angle the

angle ACC = TL(b). Since the boundary-surface triangle is

right-angled at C", the angle B", or what is the same thing, the

diedral whose edge is BB', is the complement of the angle A

.

In the spherical triangle the side opposite the right angle

is 11(a), the two sides about the right angle are 11(c) and B,

and the opposite angles are II (b) and 90° — A.

Applying to these quantities the trigonometrical formulae

for spherical right triangles, we get at once the relations that

connect the sides and angles of plane right triangles.

Produce to quadrants the two sides about the angle whose

value is the complement of A. We form in this way a spher-

ical right triangle in which the side opposite the right angle

is the complement of II (c), the two sides about the right angle

are the complements of n (a) and n (b), and their opposite

angles are the complements of B and A . From this triangle

we deduce the following rule for passing from the formulae of

spherical right triangles to those of plane triangles :

Interchange the two angles (or the two sides) and everywhere

use the complementary function, taking the corresponding

angle of parallelism for the sides.

The formulas for spherical right triangles are

sin A
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From these, by the rule given on the previous page, we
derive the following formulae for plane right triangles

:

cos2J =



56 NON-EUCLIDEAN GEOMETRY

of the triangle formed in the same way on a boundary-surface

tangent to the plane ABC at B.

cos A = :

sin II (a) =|-

Now q and q' are corresponding arcs

on two boundary-curves which have the

same set of parallel lines as axes, and

their distance apart, x, is the distance

from a boundary-curve of the extremity

of a tangent of arbitrary length, a. Thus,

we have for corresponding arcs

s
1

j = sin n (a).

3. To MN, a given straight line, erect a perpendicular at -a

point, 0, and on this perpendicular lay off OA = y below MN,
and OB and BP each equal to x above MN, x and y being any

arbitrary lengths. At P draw PR perpendicular to OP and
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extending towards the left, and through B draw EF making

with OP an angle II (x), and therefore parallel on one side to

ON and on the other side to PR. Finally, draw AK and AH,

the two parallels to EF through A.

At the point A we have four angles of parallelism

:

CAK=CAH=n(AC),
OAK = U(y),

PAH = Ii(y + 2x).

Therefore, n (y) = II (A C) + BA C,

and n(y + 2x) = n(AC)-BAC.

Now in the right triangle ABC

_ cos n(AC)
cos II (y + x) = „, .

'
>w ' cos BA C

1 — cos II (y + x) _ cos BA C — cos II (A C)
01

1 + cosn(2/ + x) ~ cosBAC + cosn(^C)

sinj[II(AC) + BAC-\smb[Il(AC)- BAC]
~ cosi[ll(AC)+ BAc]oosi[U(AC)~ BACy



58 NON-EUCLIDEAN GEOMETRY

whence,

tan2 £n(y + x) = tan£n(» tan£n(y + 2x).

tan ill (a;) is then a fmiction of x, say f(x), satisfying the

condition

[/(2/ + z)] 2 =/W(2/ + 2z),

/(y + *) _ /(y + 2"0m f(y + *)

and putting successively in this equation y + x, y + 2 x, etc.,

for y, we may add

_ f(y + 3x) _ /(y + rcx)

/0/ + 2x) /[y + (»-!) as]

n (0) = ^ and tan £ n (0) = 1 ; therefore, putting y = in

the first and last of all these fractions, we have

f(X)=
/[(»-!)*]'

or /(«b) = /[>-1)x]/(x).

.-. /(«x) = [/(x)]».

This equation is characteristic of the exponential function.*

n (x) being an acute angle, tan £ II (x) < 1 ; therefore, we may
write /(l) = e~ a

', so that /(a;) = e~ a 'x
- a' depends on the unit

of measure ; we will take the unit so that a' = 1. Finally;

since II (— x) = m— II (x),

tan i n (— x) = cot \ II (x) = [tan \ II (x)]- x
.

That is, for all real values of x

tan£II(x)= er x
,

* See footnote, p. 45.
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l — cos n (x)
or —

:
— v = cos ix + % sm ix.*

sin II (cc)

* i stands for V— 1. The best way to get the relations between the

exponential and trigonometrical functions is by their developments in

series

:

ex = 1 + x + |, +
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Changing the sign of x, we have

I + cos n (x) . ...
:

—

„ . . = cos %x — % sin ix,
sin n (x)

'

and, adding and subtracting,

1—

—

_ .
- = cos %x,

sin II (x)
'

cot TL(x) = — i sin ix.

The nature of the angle of parallelism is, therefore, expressed

by the equations

sin II (x) = —j
v coswc

i.

tan II (x) =

cos II (x) =

s,va.ix

taniaj

4. Substituting in the formulae of plane right triangles, we
find that they reduce to those of spherical right triangles with

ia, ib, and ic for a, b, and c, respectively. The formulae of

oblique triangles are obtained from those of right triangles

in the same way as on the sphere, and thus all the formulae

of Plane Trigonometry are obtained from those of Spherical

Trigonometry simply by making this change.

As fundamental formulae for oblique triangles we write

sin A _ s,m.B _ sin C
sin ia sin ib sin ic

cos ia = cos ib cos ic + sin ib sin ic cos A,

cos A = — cos B cos C + sin B sin C cos ia.

In the notation of the EE-function, these are

sin A tan II (a) = sin B tan n (b) = sin C tan n (c),
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sin II(Z>) sinll (c) . „„. „,.
> '

, .

v y = 1 — cos II (6) cos II (c) cos .4,
sin n (a) K ' w '

sin B sin C
cos A = — COS B COS C H :

—

„ . .

—
sin II (a)

5. Since for very small values of x we have approximately

sin ix = ix,

cos ix = 1 4- — >

tan «b = ia;,

our formulae for infinitesimal triangles reduce to

sin A __ sin B _ sin C
a b c

a2 = b2 + c
2 — 2 Jc cos ^4,

cos .4 = — cos (5 + C).

6. Triangles on an equidistant-surface are similar to their

projections on the base plane ; that is, they have the same

angles and their sides are proportional. Thus the formulae

of Plane Trigonometry hold for any equidistant-surface if

with the letters representing the sides we put, besides i, a

constant factor depending on the distance of the surface from

the plane.



CHAPTER III

THE ELLIPTIC GEOMETRY

In the hypothesis of the obtuse angle a straight line is

of finite length and returns into itself. This length is the

same for all lines, since any two lines can be made to coin-

cide. Two straight lines always intersect, and two lines

perpendicular to a third intersect at a point whose distance

from the third on either line is half the entire length of a

straight line.

->-

1. A straight line does not divide the plane. Starting from

the point of intersection of two lines and passing along one of

them a certain finite - distance, we come to the intersection

point again without having crossed the other line. Thus, we
can pass from one side of the line to the other without having

crossed it.

There is one point through which pass all the perpendiculars

to a given line. It is called the pole of that line, and the line

is its polar. Its distance from the line is half the entire

length of a straight line, and the line is the locus of points

at this distance from its pole. Therefore, if the pole of one

62
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line lies on another, the pole of the second lies on the first, and

the intersection of two lines is the pole of the line joining

their poles.

The locus of points at a given distance from a given line is

a circle having its centre at the pole of the line. The straight

line is a limiting form of a circle when the radius becomes

equal to half the entire length of a line.

We can draw three lines, each perpendicular to the other

two, forming a trirectangular triangle. It is also a self-polar

triangle ; each vertex is the pole of the opposite side.

2. All the perpendiculars to a plane in space meet at a

point which is the pole of the plane. It is the centre of

a system of spheres of which the plane is a limiting form

when the radius becomes equal to half the entire length of a

straight line.

Figures on a plane can be projected from similar figures on

any sphere which has the pole of the plane for centre. That

is, they have equal angles and corresponding sides in a con-

stant ratio that depends only on the radius of the sphere.

Two corresponding angles are equal, because they are the same

as the diedral angles formed by the two planes through the

centre of the sphere which cut the sphere and the plane in

the sides of the angles. Corresponding lines are proportional

;

for if two ares on the sphere are equal, their projections on the

plane are equal ; and that, in general, two arcs have the same

ratio as their projections on the plane is proved, first when

they are commensurable, and by the method of limits when

they are incommensurable.

Geometry on a plane is, therefore, like Spherical Geometry,

but the plane corresponds to only half a sphere, just as the

diameters of a sphere correspond to the points of half the

surface. Indeed, the points and straight lines of a plane

correspond exactly to the lines and planes through a point,
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but we can realize the correspondence better that compares

the plane with the surface of a sphere. If we can imagine

that the points on the boundary of a hemisphere at opposite

extremities of diameters are coincident, the hemisphere will

correspond to the elliptic plane. There is no particular line

of the plane that plays the part of boundary. All lines of

the plane are alike ; the plane is unbounded, but not infinite

in extent.

The entire straight line corresponds to a semicircle. We
will take such a unit for measuring length that the entire

length of a line shall be it ; the formulae of Spherical Trigo-

nometry will then apply without change to our plane. Dis-

tances on a line will then have the same measure as the angles

which they subtend at the pole of the line, and the angle

between two lines will be equal to the distance between their

poles. The distance from any point to its polar, half the

entire length of a straight line, may then be called a quadrant.

We can form a self-polar tetraedron by taking three mutually

perpendicular planes and the plane which has their intersec-

tion for pole. The vertices of this tetraedron are the poles of

the opposite faces. At each vertex is a trirectangular triedral,

and each face is a trirectangular triangle.

3. Theorem. All the planes perpendicular to a fixed line

intersect in another fixed line, called its polar or conjugate.

The relation is reciprocal, and all the points of either line

are at a quadrant's distance from all the points of the other.

Proof. Let the two planes perpendicular to the line AB at

// and K intersect in CD. Pass a plane through AB and R,

any point of CD. This plane will intersect the two given

planes in HR and KR. HR and KR are perpendicular to AB
;

therefore, R is at a quadrant's distance from H and K. R is

then the pole of AB in the plane determined by AB and R,
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and is at a quadrant's distance from every point of AB. But
.R is any point of CD ; therefore, any point of either line is at

a quadrant's distance -from each point of the other line, and a

point which is at a quadrant's distance from one line lies in

the other line. Again, any point, H, of AB, being at a quad-

rant's distance from all the points of CD, is the pole of CD in

the plane determined by it and CD. Thus, HR and KR are

both perpendicular to CD, and the plane determined by AB
and R is perpendicular to CD.

The opposite edges of a self-polar tetraedron are polar lines.

All the lines which intersect a given line at right angles

intersect its polar at right angles. Therefore, the distances

of any point from two polar lines are measured on the same

straight line and are together equal to a quadrant. Two
points which are equidistant from one line are equidistant

from its polar.

The locus of points which are at a given distance from a

fixed line is a surface of revolution having both this line and

its polar as axes. We may call it a surface of double revolu-

tion. The parallel circles about one axis are meridian curves

for the other axis. If a solid body, or, we may say, all space,

move along, a straight line without rotating about it, it
f
will

rotate about the conjugate line as an axis without sliding
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along it. A motion along a straight line combined with a

rotation about it is called a screw motion. A screw motion

may then be described as a rotation about each of two con-

jugate lines or as a sliding along each of two conjugate lines.

4. Theorem. In the elliptic geometry there are lines not

in the same plane which have an infinite number of common

perpendiculars and are everywhere equidistant.

Given any two lines in the same plane and their common per-

pendicular. If we go out on these lines in either direction from

the perpendicular, they approach each other. Now revolve

one of them about this perpendicular so that they are no longer

in the same plane. After' a certain amount of rotation the lines

will have an infinite number of common perpendiculars and be

equidistant throughout their entire length.

Proof. Let p be the length of the common perpendicular

AC, and take points B and D on the two lines on the same

side of this perpendicular at a distance, a.

BD<p, but if CD revolve about AC, BD will become longer

than p by the time CD is revolved through a right angle ; for

BCD will then be a right triangle, with BD for hypothenuse

and BC, the hypothenuse of the triangle ABC, for one of

its sides, so that we shall have BD>BC and BO AC.
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Suppose, when CD has revolved through an angle, d, BD
becomes equal to p and takes the position BD'. The triangles

ABC and D'BC are equal, having corresponding sides equal.

Therefore, BD 1

is perpendicular to CD'. BD' is also perpen-

dicular to BA ; for if we take the diedral A-BC-D' and place

it upon itself so that the positions of B and C shall be inter-

changed, A -will fall on the position of D', and D' on the

position of A, and the angle D'BA must equal the angle A CD'.

Therefore, BD' as well as CA is a common perpendicular to

the lines AB and CD'.

Now at the point C we have a triedral whose three edges are

CB, CD, and CD'. Moreover, the diedral along the edge CD
is a right diedral ; therefore, the three face angles of the

triedral satisfy the same relations as do the three sides of a

spherical right triangle ; namely,

cos BCD' = cos BCD cos DCD'.

But BCD = * — ACB and BCD' = ABC.

Hence, this relation may be written

cos ABC = sin A CB cos 0.

Again, in the right triangle ABC

. ,„ n cos ABC
sm A CB =

cos^>

.

-

. cos<? = oosp,

77"

or, since 6 and p are less than — >

6= p.

The angle 6, therefore, does not depend upon a. If we take

any two lines in a plane and turn one about their common

perpendicular through an angle equal in measure to the length
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of that perpendicular, the two lines will then be everywhere

equidistant.

As we have no parallel lines in the ordinary sense in this

Geometry, the name parallel has been applied to lines of this

kind. They have many properties of the parallel lines of

Euclidean Geometry.

Through any point two lines can be drawn parallel to a

given line. These are of two kinds, sometimes distinguished

as right-wound and left-wound. They lie entirely on a surface

of double revolution, having the given line as axis. The sur-

face is, therefore, a ruled surface and has on it two sets of

rectilinear generators like the hyperboloid of one sheet.



CHAPTER IV

ANALYTIC NON-EUCLIDEAN GEOMETRY

We shall use the ordinary polar coordinates, p and 6, and for

the rectangular coordinates, x and y, of a point, we shall use

the intercepts on the axes made by perpendiculars through the

point to the axes. The formulae depend upon the trigonomet-

rical relations, and in our two Geometries differ only in the

use of the imaginary factor i with lengths of lines.

I. HYPERBOLIC ANALYTIC GEOMETRY

1. The relations between polar and rectangular coordinates

:

The angles at the origin which the radius vector makes with

the axes are complementary. From the two right triangles

we have
tan ix = cos 6 tan ip,

- tan iy = sin 6 tan ip.

Therefore, tan2 ip = tan2 ix + tan2 iy,

tanty
tan =

tan ix

69
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x'ij'

2. The distance, 8, between two points :

cos i8 = cos ip cos ip' + sin ip sin ip' cos ($' — 6).

8 and one of the points being fixed, this may be regarded as

the polar equation of a circle.

3. The equation of a line

:

Let p be the length of the perpendicular from the origin

upon the line, and a the angle which the perpendicular makes
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with the axis of as. From the right triangle formed with this

perpendicular and p we have

tan ip cos (0 — a) = tan ip.

This is the polar equation of the line. We get the equation

in x and y by expanding and substituting ; namely,

cos a tan ix + sin a tan iy = tan ip.

The equation a tan ix + b tan iy = i

represents a line for which

a2 + 6
2 =

-1
t&n2 ip

Now, for real values of p, — tan2 ip < 1 (see footnote, p. 59).

The line is therefore real if a and b are real, and if

a2 + 6
2 > 1.

4. The distance, 8, of a point from a line :

Let the radius vector to the point intersect the line at A,

and let p x be the radius vector to A. We have two right
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triangles with equal angles at A, and from the expressions

for the sines of these angles we get the equation

siniS _ sinip

sin i (p
— px) sin ipx

This equation holds for all points, xy, of the plane, 8 being

negative when the point is on the same side of the line as the

origin, and_ zero when the point is on the line.

. .. sin ip . . . .

sin 16 = 7- sin %a — sin vp cos ip.
tan ipi

tanip
Now, tan ip!

cos (0 — a)

simp
sin ip = sin ip cos ip cos (6 — a),

tan ip!

and sin iS = cos ip cos ip [tan ip cos ($ — a) — tan ip~\.

8 being fixed, this may be regarded as the polar equation of

an equidistant-curve.

5. The angle between two lines :

<j> being the angle which a line makes with the radius vector

at any point, we have



THE ANGLE BETWEEN TWO LINES 73

cos <p = cos ip sin (6 — a),

sin ip
sin<£ = ——7--

sm ip

' For two lines intersecting at this point,

sin ip, sin ip2
sin fa sm fa

= r-r-.
sm2 ip

= sin ip 1 sin ip^ + '

sm %px sm %pi

tan2 ip

Now, from the equation of the line

sin ipt

tanip
= cos ipx cos ($ — «i),

4— = COS l»2 COS (0 — or2) :

tantp v

so that sin fa sin <£2 = sin ip^ sin ip2

+ COS ipx COS ip 2 COS (6— a{) COS (6— ar2).

Again, cos $i cos fa = cos ip x cos ip2 sin (0— ax) sin (6— cr2).

Adding these equations, we have

cos (fa — fa) = sin ipx sin ip2 + cos ip-i cos ip2 cos (ar2 — aj).

Two lines are perpendicular if

cos (or2
— aj) + tan ip-i tan ip2 = 0.

The lines a tan ix + S tan iy = i,

it' tan ia; + V tan iy,= i

are perpendicular if aa' + bb' = 1.

6. The equation of a circle in x and y

:

sin ip cos 6 = cos ip tan ias,

sin ip sin 6 = cos ip tan iy

;

,
. 1 1

also, cos ip = — , = = — ,

•

VI + tan2 ip ' VI + tan2
ta: + tan2 iy
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The equation of a circle may, therefore, be written

(1 + tan2 «c + tan2 iy) (1 + tan2
ix' + tan2 iy') cos2 £8

= (1 + tan ix tan ix' + tan iy tan iy') 2
.

7. The equation of a boundary-curve :

Let the axis of the boundary-curve which passes through

the origin make an angle, a, with the axis of x, and let the

point where the boundary-curve cuts this axis be at a distance,

k, from the origin, positive if the origin is on the convex side

of the curve, negative if the origin is on the concave side of

the curve. The boundary-curve is the limiting position of a

circle whose centre, on this axis, moves off indefinitely.

p' being the radius vector to the centre, the radius of the

circle is p' — k, and its equation may be written

cos i (p' — k) = cos ip cos ip' + sin ip sin ip' cos (0 — a),

or, expanding and dividing by cos ip',

cos ik + tan ip' sin ik = cos ip + sin ip tan ip' cos (0 — a).
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Now, let p' increase indefinitely, tan ip' tends to the limit i,

so that the limit of the first member of the equation is

cos ik + i sin ik, or e~ k
,

and the polar equation of the curve is

e~ k = cos ip [1 + i tan ip cos (6 — a)]

;

or, in x y coordinates,

(1 + tan2 ix + tan2 iy) e~lk

= (1 + i cos a tan ix + i sin a tan iy) 2
.

Let k be negative and equal, say, to — b, and let a = ;

also, let a be the ordinate of the point A where the curve

cuts the axis of y.

Substituting in the equation, we find

Through A draw a line parallel to the axis of x, and, there-

fore, making an angle, II (a), with the axis of y. If we draw

a boundary-curve through the origin having the same set of

parallel lines for axes, so that the two boundary-curves cut
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off a distance, b, on these axes, we know that the ratio of

corresponding arcs is

s' 1- = sin n (a) = i (See p. 56.)
s K ' COS Id \ r /

s'
therefore, — = e~". (See p. 45.)

8. The equation of an equidistant-curve

:

The polar equation of (4) reduced to an equation in x and y
takes the form

(1 + tan2 ix + tan2 iy) sin2
ih

= cos2 ip (cos a tan ix + sin a tan iy — tan vp) 2
.

9. Comparison of the three equations :

The equation

(1 + tan2 ix + tan2 iy) c2 = — (I — a tan ix — b tan iy) 2

represents a circle, a boundary-curve, or an equidistant-curve,

according as a2 + b2 < 1, =1, > 1, respectively.

a

a

10. Differential formulae

:

Suppose we have an isosceles triangle in which the angle A
at the vertex diminishes indefinitely. In the formula

sin A _ sinC

sin ia sin ic

we may put for sin A, sin ia, sin C

;

A, ia, 1,

respectively. Therefore,

(I.) ia = sinic- A.
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Corollary. In a circle of radius r, the ratio of any arc to the

angle subtended at the centre is sin ip.

Again, in the right triangle ABC, let the hypothenuse c

revolve about the vertex A. Differentiating the equation

sin A =

where b' is constant, we have

cos AdA =

But

or (II.)

cosB

cos$

sinBdB
cosi5

cosA ,

sin B =
cosm

.". dB = — cos ia cos ib dA,

dB =— cos icdA.

Now, using polar coordinates, we have an infinitesimal right

triangle whose hypothenuse, ds, makes an angle, say <j>, with

the radius vector (see figure on page 78). The two sides about

the right angle are dp and —r-*- dB
;

therefore,

tan
<f>

= dp 2 — sin2 ip dd2
,

__ sin ip dd

i dp
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For two arcs cutting at right angles, let d' denote differ-

entiation along the second arc

:

sin ip d9 _ i d'p

i dp sinip d'O

dp d'p
or

d6 d'O
= sur*p.

11. Area

:

It equals" ff*?*"'
We will consider only the case where the origin is within

the area to be computed and where each radius vector meets

the bounding curve once, and only once.

Integrating with respect to p, from p = 0, we have

or

(cos ip — 1) dO,
o

J"2ir
cos ip d6 -2 7r.

* The unit of area being so chosen that the area of an infinitesimal

rectangle may be expressed as the product of its base and altitude.
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Suppose P and P' are two "consecutive" points on the

curve, PM and P'M' the tangents at these points, and <j> the

angle which the tangent makes with the radius vector. The
angle MP'M' indicates the amount of turning or rotation at

these points as we go around the curve.

Now, by (II.),

MP'M' = d<p + cos ip dO.

In going around the curve; <p may vary but finally returns

to its original value. That is, for our curve

d<p = 0,

and the amount of rotation is

/

J"2Wcos ip dO.

Hence, the area is equal to the excess over four right angles

in the amount of rotation as we go around the curve. This

theorem can be extended to any finite area.

12. A modified system of coordinates :

Our equations take simple forms if we write in for tan ix,

iv for tan iy, ir for tan ip, and so on for all lengths of lines.
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Thus, we have u2 + v2 = r2.*

The equation of a line is

au + bv = 1,

and the equation

(1 — u2 — v2
) c

2 = (1 — au — bv) 2

represents a circle, a boundary-curve, or an equidistant-curve,

according as a2 + b2 < 1, = 1, > 1, respectively.

II. ELLIPTIC ANALYTIC GEOMETRY

The Elliptic Analytic Geometry may be developed just as

we have developed the Hyperbolic Analytic Geometry, and the

formulae are the same with the omission of the factor i. But

these formulae are also very easily obtained from the relation

of line and pole, and we shall produce them in this way.

The formulas of Elliptic Plane Analytic Geometry may be

applied to a sphere in any of our three Geometries.

1. The relations between polar and rectangular coordinates :

tan x = cos 6 tan p, tan y = sin 6 tan p

;

* If we draw a quadrilateral with three

right angles and the diagonal to the acute

angle, and use a, b, and c in the same way that

u, v, and r are used above, the five parts

lettered in the figure have the relations of a
right triangle in the Euclidean Geometry ; e.g.,

a2 + ¥ = c2
, gin A = -

, etc,
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tan2
p = tan2

a; + tan2
y,

81

tan# = tany *

tana;

2. The distance, 8, between two points :

cos S = cos p cos p' + sin p sin p' cos (&' — ff).

This may be regarded as the polar equation of a circle of

radius 8, p' and 6' being the polar coordinates of the centre.

Now, sin p cos 6 = cos p tan x,

sin p sin 6 = cos p tan y

;

1 1
also, cos p = . = =

,
=

VI + tan2
p VI + tan2 x + tan2

y

The equation of a circle in rectangular coordinates may, there-

fore, be written

(1 + tan2
a; + tan2

y) (1 + tan2
a;' + tan2 i/')cos2 8

= (1 + tan x tan x' + tan y tan y')
2
.

* The line which has the origin for pole forms with the coordinate axes

a trirectangular triangle, and x, y, and may be regarded as representing

the directions of the given point from its three vertices.

On a sphere, if we take as origin the pole of the equator, p and 6 are

colatitude and longitude, x and y, one with its sign changed, are the

" bearings " of the point from two points 90° apart on the equator.
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3. The equation of a line

:

When 8 = => the circle becomes a straight line. For this

we have, therefore, the equation

tan x tan x' + tan y tan y' + 1 = 0.

x'y' is the pole of the line.

From the equation

tan p cos (0 — a) = tan^>,

or cos a tan x + sin a tan y = tan^i,

cos or

we find tan x' =

tan y'

tan^j

sin a

tan^j

as can be shown geometrically, the polar coordinates of this

point being
j-

77
"

p + T
The equation a tan x + b tan y + 1 =

represents a real line for any real values of a and b.

4. The distance, 8, of a point from a straight line :

This is the complement of the distance between the point

and the pole of the line ; it is expressed by the equation
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sin S = — cos p sin^» + sin p cosp cos (8 — a)

= cos p cosp [tan p cos (6 — a) — tan^)].

5. The angle, +, between two lines :

This is equal to the distance between their poles ; therefore,

cos <£ = sin^> sin^' + cos^i cosp' cos (a' — a).

The two lines a tan x + b tan y + 1 — 0,

a' tan x + b' tan y + 1 =
are perpendicular if act,' + bb' + 1 = 0.

6. Differential formulae

:

The formula
sin A sin C
sin a sin c

becomes, when A diminishes indefinitely,

(I.) a = sine • A.

Corollary. In a circle of radius r, the ratio of any arc to the

angle subtended at the centre is sin r.

From the right triangle ABC, if b remain fixed, we get, by

differentiating the equation

cos B
sin .4 =

cos b



84 NON-EUCLIDEAN GEOMETRY

(II.) dB = -eoscdA.

Thus, we have for differential formulae in polar coordinates

ds2 = dp 2 + sin2 pdd*,

tan d> = sm p— >r dp

* If ^ is constant, as in the logarithmic spiral of Euclidean Geometry,

we can integrate this equation ; namely,

tan <p —— = d$.
snip

.-. tan <p log tan - = 6 + c,

Writings' for e,on <f>, this is

tan— = e*8,11 *.

2

tan - — c' etlm .
2

On the sphere this is the curve called the loxodrome.
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and for two arcs cutting at right angles

dp d'P .

d8dTe
= - smp -

The formula for area is *

sin p dp dO.//
We integrate first with respect to p, and if the area contains

the origin and each radius vector meets the curve once, and

only once, our expression becomes

XZir
cos jd dd.

The entire rotation in going around the curve is found as

on page 79, and is

cos p d6.S«/0
Thus the area is equal to the amount by which this rotation

is less than four right angles.

For example, the area of a circle of radius p is 2 7r (1 — cos p),

and the amount of turning in going around it is 2 w cos p. The

area of the entire plane is 2 tt.

7. A modified system of coordinates :

Writing u for tan x, v for tan y, r for tan p, etc., we have

u2 _|_ y 2 _ r2
_|

The equation of a line then becomes

au + bv + 1 = 0,

and the equation of a circle

(1 + u2 + v2
) c

2 = (14- au 4- bv) 2
.

* The unit of area being properly chosen,

t The footnote on page 80 applies here also.
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III. ELLIPTIC SOLID ANALYTIC GEOMETRY

We will develop far enough to get the equation of the

surface of double revolution.
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For the angle between two lines intersecting at the origin

COS $ = COS a COS a 1 + COS /3 COS /3' + COS y COS y'.

The angle subtended at the origin by the two points xyz

and x'y'z' is given by the equation

tan x tan x' + tan y tan y' + tan z tan z'
cos 6 = —*-

—

*-

tanp tanp'

For the distance between two points

cos 8 = cos p cos p' + sin p sin p' cos 6.

IT
This gives us the equation of a sphere, and for 8 = -^ the

equation of a plane. The latter in rectangular coordinates is

tan x tan x' + tan y tan y' + tan z tan «' + 1 = 0.

Let p be the length of the perpendicular from the origin

upon the plane, and a, /?, y the angles which this perpendicular

makes with the axes. Then we have for its pole

t .. i
COS a

tan x' = tan p' cos a = — > etc.

;

tan^i

hence, the equation of the plane may be written

cos a tan x + cos /? tan y + cos y tan s = tanp.

2. The surface of double revolution :

Take one of its axes for the axis of z, suppose k the distance

of the surface from this axis, and let 6 denote the angle which

the plane through the point P and the axis of a makes with

the plane of xz. We may call a and 6 latitude and longitude.

7T
Produce OA and CB. They will meet at a distance, 77 > from

the axis of z in a point, 0', on the other axis of the surface, and

there form an angle that is equal in measure to z.
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From the right triangle O'AB

But

and

Therefore,

Similarly,

tan OA
cos« = -rr-

tan O'B

tan O'A = cot x,

tan O'B = cot CB =

COS 3 =

tana; =

tany

:

cot k

cos 6

tan k cos 9

tana;

tan k cos 8

coss

tan k sin 6

coss

Squaring and adding, we have for the equation of the surface

tan2 x + tan2 y = tan2 k sec2 «.

For the length of the chord joining two points on the sur-

face, we have

cos 8 = cos p cos p' (1 + tan x tan x' + tan y tan y'+ tan z tan «').

Now, tan2
p = tan2

/c sec2 s + tan2 »
;

therefore, sec2 p = sec2 k sec2
«,

or cos p = cos k cos ».
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That is, in terms of z, z', 6, and $', we have

cos 8 = cos2 k cos («' — z) + sin2 k cos (6' — 0).

From this we can get an expression for ds, the differential

element of length on the surface

:

cos ds = cos2 k cos dm + sin2 k cos dO,

or, since cos ds = 1 5-; etc.,

ds1 = cos2 k dz 2 + sin2 A d62
.

z and 6 are proportional to the distances measured along

the two systems of circles. These circles cut at right angles,

and may be used to give us a system of rectangular coordinates

on the surface. The actual lengths along these two systems of

circles are 0sin& and scos& (see Cor. p. 83). If, therefore,

we write

a = 6 sin k, |8 = z cos k,

we shall have a rectangular system on the surface where the

coordinates are the distances measured along these two systems

of circles which cut at right angles.

The formula now becomes

ds2 = da2 + dp*.

An equation of the first degree in a and ft represents a curve

which enjoys on this surface all the properties of the straight

line in the plane of the Euclidean Geometry. Through any

two points one, and only one, such line can be drawn, because

two sets of coordinates are just sufficient to determine the

coefficients of an equation of the first degree. The shortest

distance between two points on the surface is measured on

such a line. For, the distance between two points on a path

represented by an equation in a and j3 is the same as the dis-

tance between the corresponding points and on the correspond-

ing path in a Euclidean plane in which we take a and /3 for

rectangular coordinates. It must, therefore, be the shortest
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when the path is represented by an equation of the first degree

in a and p. Such a line on a surface is called a geodesic line,

or, so far as the surface is concerned, a straight line. The

distance between any two points measured on one of these

lines is expressed by the formula

d = V(or - a'Y + (0 - P)\

Triangles formed of these lines have all the properties of

plane triangles in the Euclidean Geometry : the sum of the

angles is 7r, etc. In fact this surface has the same relation

to elliptic space that the boundary-surface has to hyperbolic

space.

The normal form of the equation of a line is

a cos <u + p sin u> =p.

The rectilinear generators of the surface make a constant

angle, ± k, with all the circles drawn around the axis which

is polar to the axis of z. These generators are then " straight

lines " on the surface, and their equation takes the form

a cos k ± p sin k = p.



HISTORICAL NOTE

The history of Non-Euclidean Geometry has been so well

and so often written that we will give only a brief outline.

There is one axiom of Euclid that is somewhat complicated

in its expression and does not seem to be, like the rest, a

simple elementary fact. It is this :
*

If two lines are out by a third, and the sum of the interior

angles on the same side of the cutting line is less than two

right angles, the lines will meet on that side when sufficiently

produced.

Attempts were made by many mathematicians, notably by

Legendre, to give a proof of this proposition ; that is, to show

that it is a necessary consequence of the simpler axioms pre-

ceding it. Legendre proved that the sum of the angles of a

triangle can never exceed two right angles, and that if there

is a single triangle in which this sum is equal to two right

angles, the same is true of all triangles. This was, of course,

on the supposition that a line is of infinite length. He could

not, however, prove that there exists a triangle the sum of

whose angles is two right angles, f

At last some mathematicians began to believe that this state-

ment was not capable of proof, that an equally consistent

* See article on the axioms of Euclid by Paui Tannery, Bulletin des

Sciences MatMmatiques, 1884.

t See, for example, the twelfth edition of his EUments de Giom&rie,

Livre I, Proposition XIX, and Note II.' See also a statement by Klein in

an article on the Non-Euclidean Geometry in the second volume of the

first series of the Bulletin des Sciences MatMmatiques.

91
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Geometry could be built up if we suppose it not always true,

and, finally, that all of the postulates of Euclid were only

hypotheses which our experience had led us to accept as

true, but which could be replaced by contrary statements in

the development of a logical Geometry.

The beginnings of this theory have sometimes been ascribed

to Gauss, but it is known now that a paper was written by

Lambert,* in 1766, in which he maintains that the parallel

axiom needs proof, and gives some of the characteristics of

Geometries in which this axiom does not hold. Even as long

ago as 1733 a book was published by an Italian, Saccheri, in

which he gives a complete system of Non-Euclidean Geometry,

and then saves himself and his book by asserting dogmatically

that these other hypotheses are false. It is his method of

treatment that has been taken as the basis of the first chapter

of this book.f

Gauss was seeking to prove the axiom of parallels for many
years, and he may have discovered some of the theorems which

are consequences of the denial of this axiom, but he never

published anything on the subject.

Lobachevsky, in Russia, and Johann Bolyai, in Hungary,

first asserted and proved that the axiom of parallels is not

necessarily true. They were entirely independent of each

other in their work, and each is entitled to the full credit of

this discovery. Their results were published about 1830.

It was a long time before these discoveries attracted much
notice. Meanwhile, other lines of investigation were carried

on which were afterwards to throw much light on our subject,

not, indeed, as explanations, but by their striking analogies.

Thus, within a year or two of each other, in the same

journal (Crelle) appeared an article by Lobachevsky giving

* See American Mathematical Monthly, July-August, 1896.

t The translation of Saccheri by Halsted has been appearing in the

American Mathematical Monthly.
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the results of his investigations, and a memoir by Minding on

surfaces on which he found that the formulae of Spherical

Trigonometry hold if we put ia for a, etc. Yet these two

papers had been published thirty years before their connection

was notided (by Beltrami).

Again, Cayley, in 1859, in the Philosophical Transactions,

published his Sixth Memoir on Quantics, in which he developed

a projective theory of measurement and showed how metrical

properties can be treated as projective by considering the

anharmonic relations of any figures with a certain special

figure that he called the absolute. In 1872 Klein took up

this theory and showed that it gave a perfect image of the

Non-Euclidean Geometry.

It has also been shown that we can get our Non-Euclidean

Geometries if we think of a unit of measure varying according

to a certain law as it moves about in a plane or in space.

The older workers in these fields discovered only the

Geometry in which the hypothesis of the acute angle is

assumed. It did not occur to them to investigate the assump-

tion that a line is of finite length. The Elliptic Geometry

was left to be discovered by Eiemann, who, in 1854, took up a

study of the foundations of Geometry. He studied it from

a very different point of view, an abstract algebraic point of

view, considering not our space and geometrical figures, except

by way of illustration, but a system of variables. He investi-

gated the question, What is the nature of a function of these

variables which can be called element of length or distance ?

and found that in the simplest cases it must be the square

root of a quadratic function of the differentials of the varia-

bles whose coefficients may themselves be functions of the

variables. By taking different forms of the quadratic expres-

sions we get an infinite number of these different kinds of

Geometry, but in most of them we lose the axiom that bodies

may be moved about without changing their size or shape.
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Two more names should be included in this sketch,— Helm-

•holtz and Clifford. These did much to make the subject

popular by articles in scientific journals. To Clifford we owe

the theory of parallels in elliptic space, as explained on page 68.

He showed that we can have in this Geometry a finite surface

on which the Euclidean Geometry holds true.*

The chief lesson of Non-Euclidean Geometry is that the

axioms of Geometry are only deductions from our experience,

like the theories of physical science. For the mathematician,

they are hypotheses whose truth or falsity does not concern

him, but only the philosopher. He may take them in any form

he pleases and on them build his Geometry, and the Geome-

tries so obtained have their applications in other branches of

mathematics.

The "axiom," so far as this word is applied to these geo-

metrical propositions, is not " self-evident," and is not neces-

sarily true. If a certain statement can be proved,— that is, if

it is a necessary consequence of axioms already adopted,— then

it should not be called an axiom. When two or more mutually

contradictory statements are equally consistent with all the

axioms that have already been accepted, then we are at liberty

to take either of them, and the statement which we choose

* Some of the more interesting accounts of Non-Euclidean Geometry

are: Encyclopedia Britannica, article "Measurement," by Sir Robert Ball.

Revue Ginerale des Sciences, 1891, "Les Geometries Non-Euclidean," by

Poincare\ Bulletin of the American Mathematical Society, May and June,

1900, " Lobachevsky's Geometry,'''' by Frederick S. Woods. Mathema-

tische Annalen, Bd. xlix, p. 149, 1897, and Bulletin des Sciences MatM-
matiques, 1897, " Letters of Gauss and Bolyai " ;

particularly interesting

is one letter in which Gauss gives a formula for the area of a triangle on

the hypothesis that we can draw three mutually parallel lines enclosing a

finite area always the same. The last two articles refer to the publica-

tions of Professors Engel and Stackel, which give in German a full history

of the theory of parallels and the writings and lives of Lobachevsky and

Bolyai. See also the translations by Prof. George Bruce Halsted of

Lobachevsky and Bolyai and of an address by Professor Vasiliev.
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becomes for our Geometry an axiom. Our Geometry is a study

of the consequences of this axiom.

The assumptions which distinguish the three kinds of Geom-

etry that we have been studying may be expressed in different

forms. We may say that one or two or no parallels can be

drawn through a point.; or, that the sum of the angles of a

triangle is equal to, less than, or greater than two right angles

;

or, that a straight line has two real points, one real point, or

no real point at infinity; or, that in a plane we can have

similar figures or we cannot have similar figures, and a straight

line is of finite or infinite length, etc. But any of these forms

determines the nature of the Geometry, and the others are

deducible from it.
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Analytic Geometry
By Frederick H. Bailey, A.M. (Harvard), and Frederick

S. Woods, Ph.D. (GSttingen), Assistant Professors

of Mathematics in Massachusetts Institute

of Technology.

8vo. Cloth. 371 pages. For introduction, $2.00.

'7THIS book is intended for students beginning the study

of analytic geometry, primarily for students in colleges

and technical schools. While the subject-matter has been

confined to that properly belonging to a first course, the
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